Caenorhabditis elegans OSR-1 Regulates Behavioral and Physiological Responses to Hyperosmotic Environments
نویسندگان
چکیده
منابع مشابه
Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments.
The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In this study, we describe the cloning of...
متن کاملnpr-1 Regulates Foraging and Dispersal Strategies in Caenorhabditis elegans
Wild isolates of Caenorhabditis elegans differ in their tendency to aggregate on food [1, 2]. Most quantitative variation in this behavior is explained by a polymorphism at a single amino acid in the G protein-coupled receptor NPR-1: gregarious strains carry the 215F allele, and solitary strains carry the 215V allele [2]. Although npr-1 regulates a behavioral syndrome with potential adaptive im...
متن کاملSKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans.
The mammalian Nrf/CNC proteins (Nrf1, Nrf2, Nrf3, p45 NF-E2) perform a wide range of cellular protective and maintenance functions. The most thoroughly described of these proteins, Nrf2, is best known as a regulator of antioxidant and xenobiotic defense, but more recently has been implicated in additional functions that include proteostasis and metabolic regulation. In the nematode Caenorhabdit...
متن کاملMammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans.
All animals detect osmotic and mechanical stimuli, but the molecular basis for these responses is incompletely understood. The vertebrate transient receptor potential channel vanilloid subfamily 4 (TRPV4) (VR-OAC) cation channel has been suggested to be an osmo/mechanosensory channel. To assess its function in vivo, we expressed TRPV4 in Caenorhabditis elegans sensory neurons and examined its a...
متن کاملCaenorhabditis elegans num-1 negatively regulates endocytic recycling.
Much of the material taken into cells by endocytosis is rapidly returned to the plasma membrane by the endocytic recycling pathway. Although recycling is vital for the correct localization of cell membrane receptors and lipids, the molecular mechanisms that regulate recycling are only partially understood. Here we show that in Caenorhabditis elegans endocytic recycling is inhibited by NUM-1A, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetics
سال: 2004
ISSN: 1943-2631
DOI: 10.1534/genetics.167.1.161